Extension of the Ginibre Ensembles of Random Matrices
نویسنده
چکیده
The Ginibre ensemble of nonhermitean random Hamiltonian matrices K is considered. Each quantum system described byK is a dissipative system and the eigenenergies Zi of the Hamiltonian are complex-valued random variables. The second difference of complex eigenenergies is viewed as discrete analog of Hessian with respect to labelling index. The results are considered in view of Wigner and Dyson’s electrostatic analogy. An extension of space of dynamics of random magnitudes is performed by introduction of discrete space of labeling indices. The comparison with the Gaussian ensembles of random hermitean Hamiltonian matrices H is performed.
منابع مشابه
Simulations of Fluctuations of Quantum Statistical Systems of Electrons
1 Abstract The random matrix ensembles (RMT) of quantum statistical Hamiltonian operators, e.g.Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Ginibre RME), are applied to following quantum statistical systems: nuclear systems, molecular systems, and two-dimensional electron systems (Wigner-Dyson's electrostatic analogy). The Ginibre ensemble of nonhermitean random ...
متن کاملApplication of hermitean and nonhermitean random matrices to quantum statistical systems
The Ginibre ensemble of nonhermitean random Hamiltonian matrices K is considered. Each quantum system described byK is a dissipative system and the eigenenergies Zi of the Hamiltonian are complex-valued random variables. The second difference of complex eigenenergies is viewed as discrete analog of Hessian with respect to labelling index. The results are considered in view of Wigner and Dyson’s...
متن کاملStatistical properties of the quantum anharmonic oscillator.
I. Abstract The random matrix ensembles (RME) of Hamiltonian matrices, e.g. Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Ginibre RME), are applicable to following quantum statistical systems: nuclear systems, molecular systems, condensed phase systems, disordered systems, and two-dimensional electron systems (WignerDyson electrostatic analogy). A family of quantu...
متن کاملThe Ginibre ensemble of real random matrices and its scaling limits
We give a closed form for the correlation functions of ensembles of a class of asymmetric real matrices in terms of the Pfaffian of an antisymmetric matrix formed from a 2×2 matrix kernel associated to the ensemble. We apply this result to the real Ginibre ensemble and compute the bulk and edge scaling limits of its correlation functions as the size of the matrices becomes large.
متن کاملGap Probabilities in Non-Hermitian Random Matrix Theory
We compute the gap probability that a circle of radius r around the origin contains exactly k complex eigenvalues. Four different ensembles of random matrices are considered: the Ginibre ensembles and their chiral complex counterparts, with both complex (β = 2) or quaternion real (β = 4) matrix elements. For general non-Gaussian weights we give a Fredholm determinant or Pfaffian representation ...
متن کامل